現在位置 : 營養 > 中老年人喝牛奶能降低心血管疾病
研究顯示:中老年人喝牛奶能降低心血管疾病
2014-11-7 牛奶是極好的營養品,但是一些患有高血壓、冠心病、動脈硬化、高血脂等心血管疾病的中老年人,對於喝牛奶經常存在著疑慮,認為牛奶中含有脂肪和膽固醇,喝了會使人體膽固醇增高,對身體健康不利。於是有一些中老年人就不敢喝牛奶了。 牛奶中雖含有一定量的膽固醇,但同時也含有能降低膽固醇的乳清酸和耐熱的低分子化合物,這兩種物質均有抑制人體肝臟合成膽固醇的功能。並且,牛奶中的鈣具有減少人體吸收食物中膽固醇的作用。牛奶中的一些氨基酸還具有保持血管彈性、防止血管硬化的能力。這種綜合作用能使人體血中總膽固配含量降低,大大超過了牛奶本身所帶人體內的膽固醇量。 早前便有研究人員發現,1天飲用超過50毫升不到一品脫的牛奶- - 會減少至少五分之一心臟病發作和中風的痛苦的機會。但鮮有來自中國人群的數據。近期在Plos One 上報導的一項來自中國廣州大型樣本庫的數據顯示,對於中國老年人,牛奶消費也一樣降低心血管疾病,結果與西方人群一致。 這項研究選擇了從來不喝全脂牛奶(Whole cow's milk )中老年人(n=14892),一周喝1-3次牛奶(n=2689),以及一周喝三次以上牛奶人群(n=2754),人群均大於50歲,比較它們的心血管疾病發生情況。 結果表明,在校正年齡,性別,研究階段,社會經濟地位,生活方式(吸煙,飲酒與鍛煉),脂肪沈積量以後,發現牛奶消費量與收縮壓呈現相關,每周3次以上中老年人收縮壓比不喝牛奶人群要低2.56 mmHg (95%CI:−3.63 to −1.49),舒張壓要低1.32 mmHg(95% CI −1.87 to −0.77),甘油三酯低0.06 mmol/L( 95% CI −0.11 to −0.002)。與HDL-C正相關,在升高0.02 mmol/L,(95% CI 0.01 to 0.04),空腹血糖升高0.08 mmol/L, (95% CI 0.01 to 0.16)。但是與LDL-C和糖尿病的發生關系不大。 這項研究表明,全脂牛奶的消費與心血管疾病風險有一定關系,高水平的牛奶消費與低心血管事件關係較大。 這項研究結果確實與國外的結果相呼應,也同樣認為,定期飲用牛奶可以降低中風和缺血性心臟病的發病危險。南威爾士的45歲至59歲男性進行了調查。結果發現中等量或者大量飲牛奶的男性,缺血性中風或者缺血性心臟病的發病危險明顯低於少量飲牛奶的男性。 相似的結果也在日本一項隊列中觀察到,認為在男性中,一月1-2次喝牛奶即能降低患者的全因死亡,但在女性中則要一周喝3-4次以上,才發現降低全因死亡的風險。 參考資料: (1). Sun Y, Jiang C, Cheng KK, Zhang W, Leung GM, Lam TH, Schooling CM.Milk consumption and cardiovascular risk factors in older Chinese: the Guangzhou Biobank Cohort Study.PLoS One. 2014 Jan 8;9(1):e84813. (2). Wang C, Yatsuya H, Tamakoshi K, Iso H, Tamakoshi A.Milk Drinking and Mortality: Findings From the Japan Collaborative Cohort Study.J Epidemiol. 2014 Oct 18. |
每周喝3次牛奶 死亡率減4成
含特殊胜降血壓 可防中風 Apple Daily 邱俊吉╱台北報導 2014年11月28日 研究指出,每周攝取乳製品3到7次,比不吃者死亡風險下降。陳國楨攝 適量攝取乳製品可保命。國家衛生研究院與國防醫學院研究發現,每周攝取牛奶等乳製品三到七次,比完全不吃者,整體死亡風險可下降三成九,死於心血管疾病的機率更能減少八成五,死於中風的機會甚至可大降九成,成果已登上國際知名期刊《美國營養學院期刊》。 研究團隊成員之一、國防醫學院公共衛生研究所教授李美璇昨說,研究團隊收集一九九三到九六年國民營養調查中、十九至六十四歲年齡層共三千八百一十人的資料,記錄其食用牛奶、優酪乳等乳製品的習慣。 攝取逾8次反效果 李美璇說,該研究以完全不吃乳製品者為基準組,再把有吃乳製品者分為每周吃一到兩次、三到七次、八次及更多等三組,每次攝取量牛乳等以兩百四十西西為限、乳酪為四十五公克,再比較各組與基準組的差異。 結果顯示,每周吃三到七次者,乳製品保護健康的效益最大,整體死亡風險、死於心血管疾病與中風的威脅,皆明顯低於基準組;若吃超過八次,效果將因人而異,有人仍獲好處,但也有人死亡風險反升高。 研究也發現,每周攝取乳製品三到七次者,身體質量指數(Body Mass Index,BMI)平均值為二十二點三,比基準組的二十三點八少一點五個單位,代表體重普遍較輕。BMI的算法為體重(公斤)除以身高(公尺)的平方。研究團隊推測,乳製品可降低死亡風險,是因其所含特殊胜肽可降血壓、抑制發炎反應。 醫:當水喝恐發胖 台大醫院心臟內科主治醫師王宗道說,乳製品保護心血管的原因不明,但也可能是常吃乳製品者本身即較重視健康,死亡風險才較低;肥胖醫學會常務理事蕭敦仁醫師說,成人每天以一杯牛奶、優格或優酪乳為限,勿超量,若把牛奶當水喝,恐致肥胖等反效果。 攝取乳製品注意事項: ●國內研究發現,成人每天1杯240c.c.的牛奶或優酪乳,或食用45公克乳酪,可降低死亡率 ●勿攝取過量,因國外研究也發現,乳製品吃太多,例如每週喝牛奶超過7杯,死亡風險反會上升 ●牛奶是國人接受度最高的乳製品,若長期飲用,建議喝脫脂牛奶 ●牛奶含高蛋白,中、晚餐前各喝1杯,可增飽足感,有利控制體重 ●如有嚴重乳糖不耐症,可改喝無糖豆漿,也可避免肥胖 資料來源:蕭敦仁醫師、李美璇教授 |
Health Benefits of Milk
Source: The Dairy Council Consumption of milk and dairy products is associated with numerous health benefits. Bone health Milk and dairy products are providers of calcium, phosphorous, magnesium and protein which are all essential for healthy bone growth and development. Adequate consumption of milk and dairy from early childhood and throughout life can help to make the bones strong and protect them against diseases like osteoporosis (a debilitating, brittle bone disorder) in later life. Teeth The amounts of calcium and phosphorous in milk and dairy products are also beneficial for the development and maintenance of healthy teeth. The most abundant protein in milk is casein and is protective as it forms a thin film on the enamel surface which prevents loss of calcium and phosphate from the enamel when the teeth are exposed to acids in the mouth. Studies have suggested that milk also reduces the effects of cariogenic foods on teeth when consumed together with them in the diet. In fact, dentists recommend that milk is the only safe drink to have between meals (except for water) as it has been shown not to cause tooth decay even in conditions perfect for damaging teeth! Milk and blood pressure An increasing number of studies suggest that consuming 3 portions of dairy each day, along with 5 portions of fruit and vegetables as part of a low salt diet can reduce high blood pressure in both adults and children. Although the exact mechanisms involved are not clear, it is thought that the calcium, potassium, magnesium and proteins within milk are all likely to be involved. Milk and cardiovascular disease Several studies have linked milk and dairy consumption with a reduced risk for cardiovascular disease. A recent study in Welsh men found that those who drank the most milk had fewer heart attacks than those who had little or no milk in their diets. This connection could be due to many factors in milk, but epidemiological studies have shown that higher intakes of calcium in particular are linked to a reduced risk of cardiovascular disease. More specifically, studies have shown that high calcium intakes may reduce high levels of bad cholesterol in the blood, and increase low levels of good cholesterol both of which are known risk factors for cardiovascular disease. In addition, it is also thought that calcium may bind harmful fats together in the gut and prevent their absorption, which in turn prevents levels in the blood increasing. Obesity Contrary to popular belief, research has shown that people who consume milk and dairy foods are likely to be slimmer than those who do not. Studies have also shown that consumption of milk and dairy foods as part of a calorie controlled diet is associated with increased weight loss, particularly form the abdomen. This is particularly beneficial since excess fat around the trunk region of the body is associated with greater risks to health. The precise mechanisms involved are unclear but are likely to involve calcium which is found in milk and dairy foods. Type 2 diabetes Studies suggest that regular consumption of low fat dairy products can help to reduce the risk of type 2 diabetes, which has been a longstanding problem in adults, and is becoming increasingly common in children and adolescents. A recent study of more than 37,000 middle aged women found that those with the highest intakes of dairy had a reduced risk of type 2 diabetes. The strongest association was found with low fat dairy products. Similarly a study of men in 2005 found a reduced risk of type 2 diabetes with increased consumption of low fat dairy, interestingly, every extra portion of dairy consumed was associated with increasingly lower risk. It is thought that this effect may be due to the combined effects of many beneficial nutrients found within dairy foods including calcium and magnesium, or the fact that dairy foods have a low glycaemic index, which helps to control blood sugar levels. Cancer There is considerable evidence to suggest that milk has a protective effect on risk of both colorectal and breast cancer with increased intakes. A recent study of 45,000 Swedish men reported that men who drank 1.5 glasses of milk per day or more, had 35% lower risk of the disease than those who had a low milk intake of less than 2 glasses per week. Additionally a study of over 40,000 Norwegian women found that those who drank milk as children and continued to do so as adults, had a lower risk of developing breast cancer. Calcium and a naturally occurring fat in dairy products known as Conjugated Linoleic Acid (CLA) have been suggested as protective components in colon cancer. Hydration In order to remain adequately hydrated, it is recommended that we consume 6-8 cups of fluid each day. If we become dehydrated, it can result in poor concentration and memory function and leave you feeling irritable and unwell. Milk is an excellent choice of fluid as it not only re-hydrates the body, but provides a host of beneficial nutrients and protects the teeth at the same time! Re-hydration after exercise is particularly important to replace lost fluids, and a recent study in the USA found that chocolate milk helped the body to recover after exhausting exercise! On the other side, meanwhile, milk may not be as good as they claimed.
|
Health Concerns about Dairy Products
Source: Physician Committee for Responsible Medicine Many Americans, including some vegetarians, still consume substantial amounts of dairy products—and government policies still promote them—despite scientific evidence that questions their health benefits and indicates their potential health risks. Bone Health Calcium is an important mineral that helps to keep bones strong. Our bones are constantly remodeling, meaning the body takes small amounts of calcium from the bones and replaces it with new calcium. Therefore, it is essential to have enough calcium so that the body doesn’t decrease bone density in this remodeling process. Though calcium is necessary for ensuring bone health, the actual benefits of calcium intake do not exist after consumption passes a certain threshold. Consuming more than approximately 600 milligrams per day—easily achieved without dairy products or calcium supplements—does not improve bone integrity.1 Clinical research shows that dairy products have little or no benefit for bones. A 2005 review published in Pediatrics showed that milk consumption does not improve bone integrity in children.2 In a more recent study, researchers tracked the diets, physical activity, and stress fracture incidences of adolescent girls for seven years, and concluded that dairy products and calcium do not prevent stress fractures in adolescent girls.3 Similarly, the Harvard Nurses’ Health Study, which followed more than 72,000 women for 18 years, showed no protective effect of increased milk consumption on fracture risk.1 It is possible to decrease the risk of osteoporosis by reducing sodium intake in the diet,4,5 increasing intake of fruits and vegetables,5,6 and ensuring adequate calcium intake from plant foods such as kale, broccoli, and other leafy green vegetables and beans. You can also use calcium-fortified products such as breakfast cereals and juices. Soybeans and fortified orange juice are two examples of products which provide about the same amount of calcium per serving as milk or other dairy products.7 Exercise is one of the most effective ways to increase bone density and decrease the risk of osteoporosis,8,9 and its benefits have been observed in studies of both children and adults.8,10-11 Individuals often drink milk in order to obtain vitamin D in their diets, unaware that they can receive vitamin D through other sources. Without vitamin D, only 10-15 percent of dietary calcium is absorbed.12 The best natural source of vitamin D is sunlight. Five to 15 minutes of sun exposure to the arms and legs or the hands, face, and arms can be enough to meet the body’s requirements for vitamin D, depending on the individual’s skin tone.13 Darker skin requires longer exposure to the sun in order to obtain adequate levels of vitamin D. In colder climates during the winter months the sun may not be able to provide adequate vitamin D. During this time the diet must be able to provide vitamin D. Few foods naturally contain vitamin D, and no dairy products naturally contain this vitamin. Therefore, fortified cereals, grains, bread, orange juice, and soy or rice milk exist as options for providing vitamin D through the diet.14 Supplements are also available. Fat Content and Cardiovascular Disease Dairy products—including cheese, ice cream, milk, butter, and yogurt—contribute significant amounts of cholesterol and saturated fat to the diet.15 Diets high in fat and especially in saturated fat can increase the risk of heart disease and can cause other serious health problems. A low-fat, plant-based diet that eliminates dairy products, in combination with exercise, smoking cessation, and stress management, can not only prevent heart disease, but may also reverse it.16,17 Cancer Consumption of dairy products has also been linked to higher risk for various cancers, especially to cancers of the reproductive system. Most significantly, dairy product consumption has been linked to increased risk for prostate18-20 and breast cancers.21 The danger of dairy product consumption as it relates to prostate and breast cancers is most likely related to increases in insulin-like growth factor (IGF-1), which is found in cow’s milk.22 Consumption of milk and dairy products on a regular basis has been shown to increase circulating levels of IGF-1.23,24 Perhaps the most convincing association between IGF-1 levels and cancer risk is seen in studies of prostate cancer. Case-control studies in diverse populations have shown a strong and consistent association between serum IGF-1 concentrations and prostate cancer risk.25 One study showed that men with the highest levels of IGF-1 had more than four times the risk of prostate cancer, compared with those who had the lowest levels.26 In the Physicians Health Study, tracking 21,660 participants for 28 years, researchers found an increased risk of prostate cancer for those who consumed ≥2.5 servings of dairy products per day as compared with those who consumed ≤0.5 servings a day.19 This study, which is supported by other findings,27,28 also shows that prostate cancer risk was elevated with increased consumption of low-fat milk, suggesting that too much dairy calcium, and not just the fat associated with dairy products, could be a potential threat to prostate health. In addition to increased levels of IGF-1, estrogen metabolites are considered risk factors for cancers of the reproductive system, including cancers of the breasts, ovaries, and prostate. These metabolites can affect cellular proliferation such that cells grow rapidly and aberrantly,29 which can lead to cancer growth. Consumption of milk and dairy products contributes to the majority (60-70 percent) of estrogen intake in the human diet. In a large study including 1,893 women from the Life After Cancer Epidemiology Study who had been diagnosed with early-stage invasive breast cancer, higher amounts of high-fat dairy product consumption were associated with higher mortality rates. As little as 0.5 servings a day increased risk significantly. This is probably due to the fact that estrogenic hormones reside primarily in fat, making the concern most pronounced for consumption of high-fat dairy products. The consumption of dairy products may also contribute to development of ovarian cancer. The relation between dairy products and ovarian cancer may be caused by the breakdown of the milk sugar lactose into galactose, a sugar which may be toxic to ovarian cells.30 In a study conducted in Sweden, consumption of lactose and dairy products was positively linked to ovarian cancer.31 A similar study, the Iowa Women’s Health Study, found that women who consumed more than one glass of milk per day had a 73 percent greater chance of developing ovarian cancer than women who drank less than one glass per day.32 Lactose Intolerance Lactose intolerance is common among many populations, affecting approximately 95 percent of Asian-Americans, 74 percent of Native Americans, 70 percent of African-Americans, 53 percent of Mexican-Americans, and 15 percent of Caucasians.33 Symptoms, which include gastrointestinal distress, diarrhea, and flatulence, occur because these individuals do not have the enzyme lactase to digest the milk sugar lactose. When digested, the breakdown products of lactose are two simple sugars: glucose and galactose. Nursing children have active enzymes that break down galactose, but as we age, many of us lose much of this capacity.34 Due to the common nature of this condition, and in order to avoid these uncomfortable side effects, milk consumption is not recommended. Contaminants Milk contains contaminants that range from hormones to pesticides. Milk naturally contains hormones and growth factors produced within a cow’s body. In addition, synthetic hormones such as recombinant bovine growth hormone are commonly used in cows to increase the production of milk.35 Once introduced into the human body, these hormones may affect normal hormonal function. When treating cows for conditions such as mastitis, or inflammation, of the mammary glands, antibiotics are used, and traces of these antibiotics have occasionally been found in samples of milk and dairy products. This treatment is used frequently, because mastitis is a very common condition in cows, due to dairy product practices which have cows producing more milk than nature intended. Pesticides, polychlorinated biphenyls (PCBs), and dioxins are other examples of contaminants found in milk. Dairy products contribute to one-fourth to one-half of the dietary intake of total dioxins.36 All of these toxins do not readily leave the body and can eventually build to harmful levels that may affect the immune, reproductive, and the central nervous systems. Moreover, PCBs and dioxins have also been linked to cancer.37 Other contaminants often introduced during processing of milk products include melamine, often found in plastics, which negatively affects the kidneys and urinary tract due to their high nitrogen content,38 and carcinogenic toxins including aflatoxins. These are additionally dangerous because they are not destroyed in pasteurization.39 Milk Proteins and Diabetes Insulin-dependent (type 1 or childhood-onset) diabetes is linked to consumption of dairy products in infancy.40 A 2001 Finnish study of 3,000 infants with genetically increased risk for developing diabetes showed that early introduction of cow’s milk increased susceptibility to type 1 diabetes.41 In addition, the American Academy of Pediatrics observed up to a 30 percent reduction in the incidence of type 1 diabetes in infants who avoid exposure to cow’s milk protein for at least the first three months of their lives.42 Health Concerns for Children and Infants Milk proteins, milk sugar, fat, and saturated fat in dairy products pose health risks for children and encourage the development of obesity, diabetes, and heart disease. While low-fat milk is often recommended for decreasing obesity risk, a study published in the Archives of Disease in Childhood showed that children who drank 1 percent or skim milk, compared with those who drank full-fat milk, were not any less likely to be obese.43 Moreover, a current meta-analysis found no support for the argument that increasing dairy product intake will decrease body fat and weight over the long term (>1 year).44 For infants, the consumption of cow’s milk is not recommended. The American Academy of Pediatrics recommends that infants below 1 year of age not be given whole cow’s milk,45 as iron deficiency is more likely due to the low amount of iron found in cow’s milk as compared with human breast milk.46 Colic is an additional concern with milk consumption. Up to 28 percent of infants suffer from colic during the first month of life.47 Pediatricians learned long ago that cow’s milk was often the reason. We now know that breastfeeding mothers can have colicky babies if the mothers consume cow’s milk. The cow’s antibodies can pass through the mother’s bloodstream, into her breast milk, and to the baby.48,49 Additionally, food allergies appear to be common results of cow’s milk consumption, particularly in children.50,51 Cow’s milk consumption has also been linked to chronic constipation in children.52 Conclusions Milk and dairy products are not necessary in the diet and can, in fact, be harmful to health. It is best to consume a healthful diet of grains, fruits, vegetables, legumes, and fortified foods including cereals and juices. These nutrient-dense foods can help you meet your calcium, potassium, riboflavin, and vitamin D requirements with ease—and without facing the health risks associated with dairy product consumption. References 1. Feskanich D, Willett WC, Colditz GA. Calcium, vitamin D, milk consumption, and hip fractures: a prospective study among postmenopausal women. Am J Clin Nutr. 2003;77:504–511. 2. Lanou AJ, Berkow SE, Barnard ND. Calcium, dairy products, and bone health in children and young adults: a reevaluation of the evidence. Pediatrics. 2005;115:736–743. 3. Sonneville KR, Gordon CM, Kocher MS, Pierce LM, Ramappa A, Field AE. Vitamin D, calcium, and dairy intakes and stress fractures among female adolescents. Arch Pediatr Adolesc Med. 2012;166:595-600. 4. Reid DM, New SA. Nutritional influences on bone mass. Proceed Nutr Soc. 1997;56:977–987. 5. Lin P, Ginty F, Appel L, et al. The DASH diet and sodium reduction improve markers of bone turnover and calcium metabolism in adults. J Nutr. 2001;133:3130–3136. 6. Tucker KL, Hannan MR, Chen H, Cupples LA, Wilson PWF, Kiel DP. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr. 1999;69:727–736. 7. National Institutes of Health. NIH Osteoporosis and Related Bone Diseases National Resource Center. Calcium and Vitamin D: Important at Every Age. Available at: http://www.niams.nih.gov/Health_Info/Bone/Bone_Health/Nutrition/. Accessed September 24, 2013. 8. Prince R, Devine A, Dick I, et al. The effects of calcium supplementation (milk powder or tablets) and exercise on bone mineral density in postmenopausal women. J Bone Miner Res. 1995;10:1068–1075. 9. Going S, Lohman T, Houtkooper L, et al. Effects of exercise on bone mineral density in calcium-replete postmenopausal women with and without hormone replacement therapy. Osteoporos Int. 2003;14:637–643. 10. Lunt M, Masaryk P, Scheidt-Nave C, et al. The effects of lifestyle, dietary dairy intake and diabetes on bone density and vertebral deformity prevalence: the EVOS study. Osteoporos Int. 2001;12:688–698. 11. Lloyd T, Beck TJ, Lin HM, et al. Modifiable determinants of bone status in young women. Bone. 2002;30:416–421. 12. Holick MF, Garabedian M. Vitamin D: photobiology, metabolism, mechanism of action, and clinical applications. In: Favus MJ, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 6th ed. Washington, DC: American Society for Bone and Mineral Research; 2006:129-137. 13. Holick M. The vitamin D epidemic and its health consequences. J Nutr. 2005;135:2739S–2748S. 14. Zhang R, Naughton D. Vitamin D in health and disease: current perspectives. Nutr J. 2010;9:65. 15. Warensjo E, Jansson JH, Berglund L, et al. Estimated intake of milk fat is negatively associated with cardiovascular risk factors and does not increase the risk of a first acute myocardial infarction. Br J Nutr. 2004;91:635–642. 16. Szeto YT, Kwok TC, Benzie IF. Effects of a long-term vegetarian diet on biomarkers of antioxidants status and cardiovascular disease risk. Nutrition. 2004;20:863–866. 17. Ornish D, Brown SE, Scherwitz LW, et al. Can lifestyle changes reverse coronary heart disease? Lancet. 1990;336:129–133. 18. Qin L, Xu J, Wang P, Tong J, Hoshi K. Milk consumption is a risk factor for prostate cancer in Western countries: evidence from cohort studies. Asia Pac J Clin Nutr. 2007;16:467–476. 19. Song Y, Chavarro JE, Cao Y, et al. Whole milk intake is associated with prostate cancer-specific mortality among U.S. male physicians. J Nutr. 2013;143:189-196. 20. Chan JM, Stampfer MJ, Ma J, Gann PH, Gaziano JM, Giovannucci E. Dairy products, calcium, and prostate cancer risk in the Physicians’ Health Study. Am J Clin Nutr. 2001;74:549-554. 21. Kroenke CH, Kwan ML, Sweeney C, Castillo A, Caan Bette J. High-and low-fat dairy intake, recurrence, and mortality after breast cancer diagnosis. J Natl Cancer Inst. 2013;105:616-623. 22. Voskuil DW, Vrieling A, van’t Veer LJ, Kampman E, Rookus MA. The insulin-like growth factor system in cancer prevention: potential of dietary intervention strategies. Cancer Epidemiol Biomarkers Prev. 2005;14:195–203. 23. Cadogan J, Eastell R, Jones N, Barker ME. Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ. 1997;315:1255–1260. 24. Qin LQ, He K, Xu JY. Milk consumption and circulating insulin-like growth factor-I level: a systematic literature review. Int J Food Sci Nutr. 2009;60:330-340. 25. Cohen P. Serum insulin-like growth factor-I levels and prostate cancer risk—interpreting the evidence. J Natl Cancer Inst. 1998;90:876–879. 26. Chan JM, Stampfer MJ, Giovannucci E, et al. Plasma insulin-like growth factor-1 and prostate cancer risk: a prospective study. Science. 1998;279:563–565. 27. Chan JM, Stampfer MJ, Ma J, Gann PH, Gaziano JM, Giovannucci E. Dairy products, calcium, and prostate cancer risk in the Physicians’ Health Study. Am J Clin Nutr. 2001;74:549–554. 28. Tseng M, Breslow RA, Graubard BI, Ziegler RG. Dairy, calcium and vitamin D intakes and prostate cancer risk in the National Health and Nutrition Examination Epidemiologic Follow-up Study cohort. Am J Clin Nutr. 2005;81:1147–1154. 29. Farlow DW, Xu X, Veenstra TD. Quantitative measurement of endogenous estrogen metabolites, risk-factors for development of breast cancer, in commercial milk products by LC-MS/MS. J Chromatogr B. 2009;877:1327-1334. 30. Cramer DW, Greenberg ER, Titus-Ernstoff L, et al. A case-control study of galactose consumption and metabolism in relation to ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2000;9:95–101. 31. Larsson SC, Bergkvist L, Wolk A. Milk and lactose intakes and ovarian cancer risk in the Swedish Mammography Cohort. Am J Clin Nutr. 2004;80:1353–1357. 32. Kushi LH, Mink PJ, Folsom AR, et al. Prospective study of diet and ovarian cancer. Am J Epidemiol. 1999;149:21–31. 33. Bertron P, Barnard ND, Mills M. Racial bias in federal nutrition policy, part I: the public health implications of variations in lactase persistence. J Natl Med Assoc. 1999;91:151–157. 34. Swallow DM. Genetics of lactase persistence and lactose intolerance. Annu Rev Genet. 2003;37:197–219. 35. Outwater JL, Nicholson A, Barnard N. Dairy products and breast cancer: the IGF- 1, estrogen, and bGH hypothesis. Med Hypothesis. 1997;48:453–461. 36. Bhandari SD, Schmidt RH, Rodrick GE. Hazards resulting from environmental, industrial, and agricultural contaminants. In: Schmidt RH, Rodrick GE, eds. Food Safety Handbook. Hoboken, N.J.: John Wiley & Sons, Inc.; 2005:291–321. 37. Baars AJ, Bakker MI, Baumann RA, et al. Dioxins, dioxin-like PCBs and nondioxin- like PCBs in foodstuffs: occurrence and dietary intake in the Netherlands. Toxicol Lett. 2004;151:51–61. 38. Fischer WJ, Schilter B, Tritscher AM, Stadler RH. Contaminants of milk and dairy products: contamination resulting from farm and dairy practices. In: Fuquay JW, ed. Encyclopedia of Dairy Sciences. 2nd ed. San Diego, CA: Academic Press; 2011:887–897. 39. Prandini A, Tansini G, Sigolo S, Filippi L, Laporta M, Piva G. On the occurrence of aflatoxin M1 in milk and dairy products. Food Chem Toxicol. 2009;47:984–991. 40. Saukkonen T, Virtanen SM, Karppinen M, et al. Significance of cow’s milk protein antibodies as risk factor for childhood IDDM: interaction with dietary cow’s milk intake and HLA-DQB1 genotype. Childhood Diabetes in Finland Study Group. Dibetologia. 1998;41:72–78. 41. Kimpimaki T, Erkkola M, Korhonen S, et al. Short-term exclusive breastfeeding predisposes young children with increased genetic risk of type I diabetes to progressive beta-cell autoimmunity. Diabetologia. 2001;44:63–69. 42. Eidelman AI, Schanler RJ. Policy statement: breastfeeding and the use of human milk. From the American Academy of Pediatrics. Pediatrics. 2012;129:827–841. 43. Scharf RJ, Demmer RT, DeBoer MD. Longitudinal evaluation of milk type consumed and weight status in preschoolers. Arch Dis Child. 2013; 98:335-340. 44. Chen M, Pan A, Malik VS, Hu FB. Effects of dairy intake on body weight and fat: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012;96:735-747. 45. Gartner LM, Morton J, Lawrence RA, et al. Breastfeeding and the use of human milk. Pediatrics. 2005;115:496–506. 46. Pennington JAT, Douglass JS. Bowes and Church’s Food Values of Portions Commonly Used. 18th ed. Baltimore, MD: Lippincott Williams & Wilkins; 2005. 47. Lucassen PL, Assendelft WJ, van Eijk JT, Gubbels JW, Douwes AC, van Geldrop WJ. Systematic review of the occurrence of infantile colic in the community. Arch Dis Child. 2001;84:398–403. 48. Jarvinen KM, Makinen-Kiljunen S, Suomalainen H. Cow’s milk challenge through human milk evoked immune responses in infants with cow’s milk allergy. J Pediatr. 1999;135:506–512. 49. Paronen J, Bjorksten B, Hattevig G, Akerblom HK, Vaarala O. Effect of maternal diet during lactation on development of bovine insulin-binding antibodies in children at risk for allergy. J Allergy Clin Immunol. 2000;106:302–306. 50. Sampson HA. Food allergy. Part 1: immunopathogenesis and clinical disorders. J Allergy Clin Immunol. 2004;113:805–819. 51. Host A. Frequency of cow’s milk allergy in childhood. Ann Allergy Asthma Immunol. 2002;89(6 Suppl 1):33–37. 52. Iacono G, Cavataio F, Montalto G, et al. Intolerance of cow’s milk and chronic constipation in children. N Engl J Med. 1998;339:1100–1104. |