★  優活 健康網    ★  Living Well Website
  • 首頁
    • ● ER
    • ● 台灣 美食悠遊網
    • ● 台灣旅遊 導覽網
    • ● 生活智慧網
    • ● 台灣 消費者網站
    • ★ 中國 旅遊網
  • 美食
    • 美食
    • ● 火鍋美食 介紹 - Hot Pot
    • ● (麵食)- 牛肉麵、炸醬麵、拉麵 - Noodles
    • ● 豆腐類 美食 - Tofu Dishes
    • ● 香菇類 美食菜餚 - Mushroom
    • ● 馬鈴薯、土豆菜餚 - Potatoes
    • ● 潤餅卷, 春捲- Popiah, Egg Roll
    • ● 台灣便當飲食, 台鐵便當- Boxed meal
    • ● 台灣 滷肉飯 Braised Pork Rice
    • ● 台灣料理- 油飯、糯米 Glutinous oil rice
    • ● 日式料理- 蛋包飯, 關東煮 Japan cuisine
    • ● 日式料理 - 丼物 (蓋澆飯) (Donburi)
  • 購物
    • ▼ 商圈 ===> >
      • ● 台北市 西門町 商圈 Ximending B. District
      • ● 台北市 信義商圈- Taipei 101 Shopping
      • ● 台北市 五分埔商圈- Wufenpu Garment
      • ● 台北 重慶南路書店街 Taipei Bookstores
      • ● 台北光華商場- 數位新天地- Guanghua
    • ▼ 經濟 ===> >
      • ● 懂程式,會美編,在台新金只值21K
      • ● 師大夜市餐廳經營 - 我賺的錢 都給房東了
      • ● 越勞中國月賺900美元,偷渡來台只領22K
      • ● 美國醫療費用世界最昂貴- US medi-cost
      • ● 餐廳我賺的 都給房東了- High Rent
      • ● 經營
    • ● 台北101 購物中心-Taipei 101 shopping
    • ● 團購 -- Group Buying
    • ● 蘋果,宏達電,三星, 手機大戰- htc Apple
    • ● 台灣團購網騙很大 Groupon、Gomaji
    • ● 中國大陸團購分析-Group buying in China
  • 飲食
    • ● 糖份 - Sugar : The Bitter Truth
    • ● 好吃美食與健康危險- 警訊 - Food risk
    • ● 常吃泡麵有害身體健康
    • ● 當心水果食物中毒 - Food Poisoning
    • ● 不安全食物: 壽司被評為第一 - Sushi
    • ● 一舉兩得 - 外食族抗漲帶便當
    • ● 苦茶油 - Tea Seed Oil
    • ● 隔夜菜食用有何可能問題?
    • ● 長期不吃肉竟早衰失智
    • ● 飲食與癌症關係密切 - Diet and Cancer
    • ● 不含麩質飲食法的爭議- Gluten-free diet
    • ● 吃深海魚 小心汞中毒- Mercury poison
    • ● 老人愛管灌飲食, 恐營養失衡- Elderly
    • ● 手搖飲當水喝!兩壯年男中風 半邊癱瘓
  • 保健
    • ▼ 運動 ===> >
      • ● 運動健身好處多- Exercise for Health
      • ● 運動讓你每個細胞都健康 - Exercise
      • ● 慢跑運動 - Jogging Exercise
      • ● 活動:要活就要運動 - Exercise is Key
      • ● 有氧健身操課訓練 - Aerobics for health
    • ● 養生之道- 勿喝冰冷飲料- No cold drink
    • ● 小米, 燕麥, 糙米煮粥吃 改善胃潰瘍, 發炎
    • ● 網傳留言:亂吃東西中年以後會很痛苦
    • ● 葡萄糖胺食品保健?毒物醫師斥無效
    • ● 山竹果汁 - Mangosteen Juice
    • ● 滿街飲料店, 嚴重傷害台灣人健康-Hazard
    • ● 牛初乳奶粉不能直接用作嬰兒主食
    • ● 趁一切還來得及- 養生之道- Not too late
    • ● 國際藥聞- 醫學期刊: 別浪費錢買維他命
    • ● 顧他命可緩化療, 但沒療效- Glutamine
  • 保健
    • ● (三高) - 高血壓, 高血糖, 高血脂
    • ● 油漱法 Oil Pulling - 荒謬的保健法
    • ● 101歲劈腿爺,頭能頂地,腿可繞頸- 101 yr
    • ● 阿金博士減肥法 - Dr. Atkin's Diet
    • ● 最流行九種減肥飲食法- Weight loss diet
    • ● 膳食纖維的功能與重要 - Dietary Biber
    • ● 大燕麥片降膽固醇- Oatmeal
    • ● 清朝 乾隆皇帝的高壽秘訣
    • ● 冥想默思 (Meditation)
    • ● Health Benefits of Meditation
    • ● Unblock cholesterol plaqued arteries
  • 營養
    • ● 維生素缺乏症 - Vitamin Deficiency
    • ● 維生素A 缺乏症 - Vitamin A Deficiency
    • ● 維生素B1 (硫胺)缺乏 - Vitamin B1
    • ● 維生素B2 (核黃素) - Vitamin B2
    • ● 維生素B3 (菸鹼酸) - Vitamin B3
    • ● 維生素B5 (pantothenic acid)
    • ● 維生素B6
    • ● 維生素B9 (葉酸) 缺乏- Folic Acid
    • ● 維生素B12 缺乏症- Vit B12 Deficiency
    • ● 維生素B12 - Vitamin B12
    • ● 維生素C 缺乏症 - Vitamin C Deficiency
    • ● 維生素D 缺乏症 - Vitamin D Deficiency
    • ● 維生素E 缺乏症 - Vitamin E Deficiency
    • ● 維生素 K - Vitamin K
    • ● 補鉀降低心腦血管疾病風險 - Potassium
    • ● 補鈣不能盲目,腎不好補鈣會傷害心臟
  • 營養
    • ● 魚油 - Fish oil
    • ● 魚肝油 - Cod Liver Oil
    • ● 二十二碳六烯酸 - DHA
    • ● 水果的營養 - Fruit Nutrition
    • ● 抗氧化劑 Anti-Oxidant
    • ● 薑黃素(Curcumin) - 咖哩 Curry
    • ● 人體缺乏維生素B2與得患癌症有關
    • ● 中老年人喝牛奶能降低心血管疾病
    • ● Milk Myth - 牛奶迷思
    • ● Nutrition value- Juice vs. Concentrate
    • ● Benefits of Orange Juice
    • ● Nutrition & Food - Google Tech Talks
    • ● Selenium 硒元素
  • 健康
    • ▼ Health ===> >
      • ● Vitamin E Tied to Prostate Cancer Risk
      • ● Nutrition and Immune System
      • ● Our Microbes in Us
      • ● Nutrients that Boost Immunity
      • ● Exercise and Aging
      • ● Leg Cramps While Sleeping
    • ● 營養健康補品 - 初乳 - Colostrum
    • ● 關於蜂蜜 - 一個真實的故事 - Honey Story
    • ● 科學家研究咖啡因, 發現利弊參半-Coffee
    • ● 震驚世界的醫學發現!Awesome discovery
    • ● 十大健康惡習- Top 10 unhealthy habits
    • ● 服用維他命有助健康? 效果具爭議-Vitamin
    • ● 健康飲食就要從飲食中少油做起- Less oil
    • ● 手腳冰冷,恐潛藏健康問題-
    • ● 猛灌紅茶不喝水,壯男中風半癱
    • ● 如何減肥瘦身 - Lose Body Weight
    • ● 肌肉減少症- 骨骼肌減少症- Sarcopeni
    • ● 怎樣測試自己是酸性體質或鹼性體質?
    • ● 烘烤炸澱粉食物易生致癌物
    • ● 枸杞與眼睛健康
    • ● 瀋陽男1夜喝20瓶啤酒, 胰臟溶解只剩一層膜
  • 健康
    • ● 人體胃的生理功能與病症
    • ● 小腸的生理功能與病變
    • ● 大腸的生理功能與病變
    • ● 如何提升人體免疫力 - Enhance Immunity
    • ● 保衛人體健康免疫系統- Immunity
    • ● 穀胱甘肽- Glutathione- (Antioxidant)
    • ● 咳嗽3週才會好 別急吃抗生素
    • ● 如何保持你的腸道健康 - Healthy Guts
    • ● 緩解疼痛的策略: 雙臂交叉?Cross arms
    • ● 睡眠改善高血糖-Sleep lower blood sugar
    • ● 心因性猝死,1個月前會出現徵兆- Cardiac
    • ● 預防髖部骨折,補充鈣與維生素D- Pelvis
    • ● 肉類攝取與罹患癌症的風險
    • ● 雞蛋與第二型糖尿病發生機率
    • ● 鉀離子與身體健康 - K+
    • ● 姿勢性低血壓 Orthostatic Hypotension
  • 檢查
    • ▼ 驗血 ===> >
      • ● 驗血 - 全血細胞計數 - CBC
      • ● 癌症指數的正確閱讀
      • ● 抗體 Antibody (Immunoglobulin)
      • ● Serum Free Light Chains -血清遊離輕鏈
      • ● Beta 2-Microglobulin (β2-M)
    • ● 膀胱(內視)鏡檢查 - Cystoscopy
    • ● 大腸(內視)鏡檢查與結腸瘜肉
    • ● 超音波掃瞄檢查- Ultrasound scan
    • ● 孕婦超音波- Pregnancy ultrasound
    • ● 心臟病檢查
    • ● 肌電圖 檢查- Electromyography
    • ● 腎功能檢查 - Kidney Function Tests
    • ● 紅血球與貧血 (RBC & Anemia)
    • ● 尿液分析檢驗 - Urine Test
    • ● 胸部X光檢查 - Chest X-ray
    • ● 血壓與血壓測量 - Blood Pressure
    • ● 泌尿科常做的檢查
  • 病症
    • ▼ 胃腸病 ===> >
      • ● 胃食道逆流病 - GERD, Reflux Disease
      • ● 慢性胃炎 - Chronic Gastritis
      • ● 胃黏膜-腸上皮化生 Intestinal Metaplasia
      • ● 非潰瘍性消化不良- Nonulcer dyspepsia
      • ● 下一個國民病大腸癌? 如何發現徵兆?
      • ● 胰臟炎與胰臟疾病 - Pancreatitis
    • ▼ 癌症 ===> >
      • ● 癌症免疫療法- Cancer Immunotherapy
      • ● 多發性骨髓瘤 - Multiple Myeloma
      • ● 胰臟癌 - Pancreatic Cancer
      • ● 淋巴瘤 - Lymphoma
      • ● 泌尿道癌症
      • ● 膀胱癌 - Bladder Cancer
      • ● 肝癌 - Liver Cancer
      • ● 食道癌 - Esophageal Cancer
    • ▼ 症狀 >
      • ● 血尿
    • ● 阿茲海默氏症 Alzheimer D. (老年癡呆症)
    • ● 如何預防老年癡呆症 -
    • ● 如何預防失智症 -
    • ● 重肌無力症 - Myasthenia Gravis
    • ● What's Causing Your Memory Loss?
    • ● Level of GFR and Anemia
    • ● 低鈉血症 - Hyponatremia
    • ● 體液與血鈉異常之處置
    • ● 低血鉀症 - hypokalemia
    • ● 高血鉀症 - hyperkalemia
    • ● 低鉀血症和高鉀血症
    • ● 酸血症 - Acidemia - 代謝性酸中毒
    • ● 低鈣血症 - Hypocalcemia
  • 醫療
    • ▼ 健保 ===> >
      • ● 中央健康保險署 - 台灣二代健保
      • ● 台灣二代健保
      • ● 台灣全民健保與急診醫療 - ER
      • ● 健保藥費核價離譜- 同成分藥劑,價差逾2倍
      • ● 全民健保老人整合門診,家屬大多不知道
      • ● 台灣的醫療安全問題 -
    • ▼ 心臟病 ===> >
      • ● 心肌梗塞 - Heart Attack Signs
      • ● 心臟病 體外反搏治療- EECP Therapy
      • ● 體外「心臟震波」治療冠心病 - CSWT
    • ▼ 眼科 ===> (眼睛健康與保養) >
      • ● 中老年人眼睛與視力問題- Eye disease
      • ● 眼睛 白內障 (Cataract)
      • ● 眼睛 白內障的治療 - Cataract
    • ● (好書推薦):最新天星英漢百科醫學辭典
    • ● 乳房腫塊以為瘀青, 推拿推到癌細胞擴散
    • ● 葡萄糖胺療效淺,破除維骨力神話
    • ● 腳跟疼痛?千萬別輕忽
    • ● 中醫經方療效不顯,專家: 中藥用量該多大
    • ● 你相信「中醫」有多少療效?
    • ● 多發感覺運動神經病變-polyneuropathy
    • ● 腳麻走不動?你可能需要神經傳導檢查
    • ● 成大揪肝硬化元凶,治肝大突破
    • ● 臨床打針注射技術
    • ● 鼻胃管 - Nasogastric Tube
  • 醫療
    • ● 血尿 Hematuria
    • ● 泌尿道感染 - 膀胱炎- Cystitis
    • ● 憂鬱症 - Depression (Mood)
    • ● 流感重症合併,肺炎感染驟增
    • ● 老人骨質疏鬆症, 逾半數有骨折- Fracture
    • ● 骨質疏鬆症與防治 - Osteoporosis
    • ● 安慰藥效果 - Placebo Effect
    • ● 帕金森氏症 - Parkinson's Disease
    • ● 帕金森氏症治療 - Parkinson Treatment
    • ● 帕金森氏症與睡眠失常
    • ● Glutathione
    • ● 達文西機械手臂手術- da Vinci Surgery
    • ● 高血壓治療
  • 腎病
    • ▼ 腎病藥物 ===> >
      • ● 活性炭 克裏美淨(Kremezin) 效果如何
      • ● 活性炭 克裏美淨(Kremezin)效果不明顯
      • ● 吉多利錠- Keto-analogues for CKD
    • ● Sodium Bicarbonate Heals Kidney D.
    • ● Sodium Bicarbonate Cures Cancer
    • ● 腎血管肌肉脂肪瘤
    • ● 泌尿道感染 尿道炎 基本知識
    • ● 如何保護你的腎臟-Protect your kidneys
    • ● 腎臟微循環與其內在調節 (急診醫學)
    • ● 人體內水與電解質的平衡 (急診醫學)
    • ● 腎臟炎的(飲食)治療處理
    • ● 腎臟病患者飲食原則與禁忌- Kidney D.
    • ● 腎臟病與蛋白質的攝取
    • ● 如何保護腎臟?遠離慢性腎臟病
    • ● 腎衰竭患者的飲食
    • ● 逆轉腎!低蛋白搭酮酸胺延緩洗腎
    • ● 洗腎病患營養與飲食原則
    • ● (腎臟) 透析 (Dialysis) -- 洗腎
    • ● Pentoxifylline 與慢性腎臟病
    • ● Healthy Foods for Kidney Disease
    • ● How to delay the onset of dialysis
  • 貧血
    • ● 貧血與診斷 - Anemia and Diagnosis
    • ● 貧血與治療 - Anemia and Treatment
    • ● 搶救貧血大作戰 - Fighting Anemia
    • ● 缺鐵性貧血與治療- Iron-Defici anemia
    • ● 貧血與慢性腎臟病- Anemia in CKD
    • ● 貧血可能的疾病風險
    • ● 輸血 相關知識- Blood Transfusion
    • ● Anemia and EPO Treatment
  • RA
    • ● 類風濕性關節炎 - Rheumatoid Arthritis
    • ● 類風濕性關節炎- Rheumatoid Arthritis
    • ● 過敏免疫風濕科- 常用藥物- A.I.R. Drug
    • ● 免疫調節藥- Methotrexate, MTX 至善錠
    • ● Methotrexate Toxicity- Treatment
    • ● 免疫調節藥- 磺胺藥- Sulfasalazine, SSZ
    • ● 免疫調節藥- Hydroxychloroquine, HCQ
    • ● 類固醇 藥物 - Steroids
    • ● 生物製劑 - Anti-TNF Biologic Agents
    • ● 生物製劑- 復邁 (Humira, Adalimumab)
    • ● 懷孕與類風濕關節炎藥物
    • ● C反應蛋白 C-Reactive Protein- CRP
    • ● 紅血球沉降率 - ESR
    • ● 類風濕因子 Rheumatoid Factor (RF)?
    • ● 抗環瓜氨酸抗體 - Anti-CCP
    • ● 食物療法與類風濕關節炎-Diet & RA
    • ● 食物與類風濕關節炎- Food & RA
    • ● Natural Remedies for RA
    • ● Vitamins, Minerals, and RA
  • 藥物
    • ● Acetylcysteine-富泌舒Fluimucil, Actein
    • ● 家庭常備藥物 - Family Kept Medicine
    • ● 小護士 - 曼秀雷敦 - Mentholatum
    • ● 乙醯胺酚-普拿疼止痛藥-Acetaminophen
    • ● 撒隆巴斯類 鎮痛貼片- Salonpas
    • ● 抗生素藥品 - Antibiotics
    • ● 麥格斯口服液- Megestrol Acetate
    • ● 萬靈藥 - 阿斯匹靈 - Aspirin
    • ● 藥物不良反應 - Adverse Drug Reaction
    • ● 葡萄柚汁可能對藥物的影響- Grapefruit
    • ● 藥物含鈉造成的不良作用
    • ● 瀉劑 - Bisacodyl
    • ● 毒物 戴奧辛 - Dioxin
    • ● Beware of the Prolia (injection) Drug.
    • ● 7 Drugs Whose Dangerous Risks
  • 藥物
    • ● 抗生素 賜復力生 Ceflexin - Cephalosporin
    • ● 抗生素 - Levofloxacin (Cravit)
    • ● 雙嘧達莫 - 潘生丁- Persantine
    • ● 諾安命 Novamin (Prochlorperazine)
    • ● 抗凝血劑- Warfarin 可邁丁- Coumadin
    • ● 高血壓藥- 脈優- Amlodipine- Norvasc
    • ● 高血壓藥 (道福寧) Dophilin
    • ● 類固醇 藥物 - Steroid Drugs
    • ● 消化性潰瘍藥 - Rabeprazole (Pariet)
    • ● 消化性潰瘍藥- Esomerprazole (Nexium)
    • ● 斷血炎 (Transamin) - 傳明酸
    • ● 除鐵能 - Deferoxamine (Desferal)
    • ● Pentoxifylline 與慢性腎臟病
    • ● 帕金森病用藥 Madopar 美道普
    • ● 帕金森病用藥 Requip 力必平(Ropinirole)
    • ●
  • 牙科
    • ● 正確的刷牙方式 - Teeth Brushing
    • ● 牙周病預防與治療-Periodontal disease
    • ● 牙結石清除-洗牙-Scaling & root planing
    • ● 牙痛的原因及應對方法 - Toothache
    • ● 經常刷牙保持口腔清潔,有助於預防失智症
    • ● 矯正牙齒時牙齦萎縮- Receding gum
    • ● 牙齦萎縮與牙齒病症- Gum Recession
    • ● 牙齒 根管治療術 - Root Canal
    • ● 牙齒顯微根管治療術- Microendodontics
    • ● 三叉神經痛誤以為牙痛,阿嬤沒牙才搞清楚
    • ● 婦人痛失五顆牙!才知三叉神經痛作怪
    • ● 資深牙醫的良心告白:能做假牙就不要植牙
    • ● 牙痛和三叉神經痛怎麼分辨?
    • ● 長期的不明原因的牙痛請注意牙隱裂
  • 教育
    • ●
    • ● 觀光餐飲成為台灣技職院校熱門科系
    • ● 台灣教育制度無助提升學生素質- Diploma
    • ● 台灣大學教育泡沫化- Busted education
    • ● 經濟搞成這樣很正常, 陸生: 文化大學弱爆了
    • ● 台灣大學數量密度過高, 大學學歷沒價值
  • 人物
    • ● 台灣 企業家 經營之神 王永慶
    • ● 台灣 企業家 宏達電 王雪紅 - Cher Wang
    • ● 台灣 企業家 鴻海 郭台銘 - Terry Gou
    • ● 中華民國 總統 馬英九 - Ma Ying-jeou
    • ● 台灣 第一名模 - 林志玲 - Lin Chi-Ling
    • ● 台灣特有的檳榔西施- Betel nut beauty
    • ● 台灣新聞人物相片- Taiwan image
    • ● 台灣 政治人物 婚外情
    • ● 台灣 陳水扁的319事件
  • 休閒
    • ▼ 電影 ===> >
      • ● 台北 電影院 Taipei Movie Theaters
      • ● 台灣國語電影- 經典回顧- Movie Classic
      • ● 台灣電影歷史介紹- Taiwan Movie History
      • ● 2011台灣電影〈賽德克·巴萊〉
      • ● 近年台灣電影 介紹
      • ★ 外國(電影) 記錄影片
    • ▼ 交通 ===> >
      • ● 台北 捷運系統 - Metro Taipei
      • ● 台灣 高速鐵路 - Taiwan HSR
      • ● 台灣 中華航空 - China Airlines
      • ● 台灣 長榮航空 - EVA Air
      • ● 台灣 計程車 - Taiwan Taxi
      • ● 台灣 遊覽車 - Taiwan Tour Bus
    • ● 台灣重要傳統節日- Taiwan festivals
    • ● 台灣廟會鋼管舞表演-Taiwan pole dance
    • ● 中秋節在台灣如何變成烤肉節
    • ● 台灣趣事笑話 集錦
    • ● 郊外美景欣賞 -
    • ● 環球小姐 選美 - Miss Universe
    • ● 好萊塢 健美男星- Hollywood Fit Stars
    • ● 2012台北世貿 新車大展-2012 Auto Show
    • ● 世界服裝展台走秀-Runway fashion show
    • ● 服裝設計展覽 - Fashion Design
    • ● 台北服裝走秀 - Fashion Show Taipei
    • ● 台北世貿中心- 資訊月 展覽
    • ● 台灣展場 Show Girls
    • ▼ 旅遊 ===>
  • 連接
    • 聯絡
    • ● 台灣美食悠遊網- Taiwan Gourmet
    • ● 台灣 旅遊網- Taiwan Tour Travel
    • ● 生活 智慧網- Good Living Website
    • ● 消費者 網站- Consumer Website
    • ★ 大陸 神州網- China Tour Travel
    • ● 台灣客 資訊網
    • ★ 知識 技術網
    • ● 快樂果 旅遊- Caolgo Tour & Travel
    • ● 自行車 全聯網 -(1)
    • ● 英文 學習網 (1)
    • ★ 最新天星英漢百科醫學辭典
    • ★ 醫學藥知網 - Medical Knowledge

現在位置 : 營養 > 維生素 K - Vitamin K

維生素 K  (Vitamin K)
       維生素K是指具萘醌基的衍生物2-甲萘醌,是人類的維生素,具疏水性。它是一些特定蛋白質轉譯後所必需的,尤其是血液凝固中必備的蛋白質。維生素K2 (甲萘醌(Menaquinone)和四烯甲萘醌(Menatetrenone))通常在動物腸中由細菌製造,因此缺乏維生素K是極為罕見的,除非腸道有嚴重損傷。除天然的維生素K1、K2外,亦有人工合成的維生素K3、K4。
化學結構
       維生素K是一族類似結構的化合物,其共同有甲基化萘醌環,但是在3號位置上的烴側鏈則不同。葉綠醌(Phylloquinone。也稱為維生素K1)側鏈上具四個異戊二烯(isoprenoid)殘基,其中一個是不飽知的。甲萘醌(Menaquinone,維生素K2)側鏈上不飽知的異戊二烯鏈的數目不等,通常簡稱為MK-n,n代表異戊二烯鏈的數目。MK-4,5,7與維生素K1活性相等。MK-1隻有維生素K1的1%活性,MK-10也只有30~49%的活性。甲萘醌(Menadione,維生素K3)是人工合成產物,但具有毒性。
生理學
       維生素K參與某特定的蛋白質中的穀氨酸的γ位置的羧化作用,這些γ-羧化穀氨酸(縮寫為Gla)參與鈣離子結合,而具 Gla殘基對活性是必需的蛋白質統稱Gla-蛋白質。目前,有14個人類的Gla-蛋白質被發現,它們參與以下生理作用:
● 凝血(凝血酶原(FactorⅡ),凝血因子Ⅶ、Ⅸ、Ⅹ,C-蛋白質,S-蛋白質和Z-蛋白質)
● 骨質新陳代謝
● 血管
疾病中角色
       維生素K發生缺乏的原因是由於在腸中吸收被干擾(例如膽管阻塞)或由於治療或意外服用維生素K拮抗劑,而因營養缺乏引致維生素K缺乏症是很罕見的。由於維生素K的缺乏而使Gla 殘基不能或只部分生成,因此Gla蛋白質是不活化。以上提及的三個生理功能缺乏控制也許會導致:不可控制大出血風險、軟骨鈣化和嚴重變形的骨質生長、不可溶的鈣鹽沈積在動脈壁上。
新生兒維生素K缺乏
      新生兒有許多原因會造成維生素K缺乏。他們出生的時候可能會缺乏維生素K,原因是這種維生素不易從母體經由胎盤進入胎兒體內,經由母乳哺育提供的維生素K不足,而且胎兒腸道的產維生素K的細菌仍未進入,因此有些新生兒此維生素會很少。
發現
      在1920年代晚期,丹麥科學家Henrik Dam研究以膽固醇量低飼料養雞觀察膽固醇的角色。幾個星期後,動物被開始有出血現象和開始流血。這些毛病不能以增加膽固醇量低飼料來恢復健康。似乎暗示某化合物與膽固醇一起從食物被提取出來,因外這種化合物稱凝血維生素。這個新的維生素以K標示是因為最初的發現在德國學報報告,德文便是Koagulations 維生素。聖路易士大學的Edward Adelbert Doisy 再加以研究,因比發現其結構及化學特性。Dam 和Doisy 在維生素K 的研究貢獻而同時分享1943 年醫學諾貝爾獎。Louis Fieser 是第一個成功以化學合成這維生素。
      幾十年來,雞模型的維生素缺乏症是唯一的方法定量各種食物中的維生素K :小雞先被引起維生素K缺乏症,然後被餵食已知含量的維生素K 的食物。血液凝集被飲食恢復的程度被採用為其維生素K 含量指標。
      1938年,Harry Pratt Smith,Emory Warner,Kenneth Brinkhous,and Walter Seegers 等在 University of Iowa病理系醫生報導第一個成功以維生素K治療因prothrombin 缺乏的黃疸病病人出血的致命危險。維生素K 的精確作用未被發現。直到1974 年,Stenflo 等從服用大劑量的維生素K拮抗劑warfarin母牛中分離出維生素K-依賴的凝血酶原(Factor Ⅱ)。正常的凝血酶原含有10個不尋常的胺基酸殘基,且後來被確認為γ-羧化穀氨酸(Gla)。但從warfarin處理過的母牛分離之凝血酶原卻有正常穀氨酸,因此便稱為去羧基凝血酶原descarboxyprothrombin。額外羧基在Gla 上明顯的證明維生素K 作為將穀氨酸Glu轉換成Gla的羧化反應的角色。
Gla-蛋白質
       現在人類的Gla蛋白質特性被了解已有一定程度:凝血因子Ⅱ(凝血酶原)、Ⅶ、Ⅸ和Ⅹ,C和S-抗凝血蛋白質和以凝血酶為標的Z-蛋白質、骨鈣蛋白(骨Gla蛋白質)、鈣化抑制基質Gla蛋白質(matrix gla protein,MGP),細胞生長調控的特殊抑長基因6 蛋白質(Gas6)和當前功能仍未知的穿膜Gla蛋白質。Gas6可能透過活化Axl 接受器酪氨酸激酶和刺激細胞增生或防止細胞凋亡。在以上為人所知的例子中,Gla殘基的是功能必需的。
       現已知Gla蛋白質存在於各種脊椎動物:哺乳動物、鳥、爬行動物和魚。一些澳大利亞蛇毒液便由活化人血凝結的系統。有些情況,活化作用由Gla蛋白質與磷酸質膜結合因此轉化前凝血因子(procoagulant)成活化態。
       由無脊椎動物地紋芋螺(Conus geographus)產生的Gla蛋白是由芋螺毒素(conantokins)形成。這些蝸牛產生的神經毒素具有富含Gla的肽,而且足以殺害成年人。
Picture
A sample of phytomenadione (vitamin K1) for injection, also called phylloquinone
Vitamin K
       Vitamin K is a group of structurally similar, fat-soluble vitamins that the human body needs for post-translational modification of certain proteins required for blood coagulation, and in metabolic pathways in bone and other tissue. They are 2-methyl-1,4-naphthoquinone (3-) derivatives. This group of vitamins includes two natural vitamers: vitamin K1 and vitamin K2.
      Vitamin K1, also known as phylloquinone, phytomenadione, or phytonadione, is synthesized by plants, and is found in highest amounts in green leafy vegetables because it is directly involved in photosynthesis. It may be thought of as the "plant form" of vitamin K. It is active in animals and may perform the classic functions of vitamin K in animals, including its activity in the production of blood-clotting proteins. Animals may also convert it to vitamin K2.
      Vitamin K2, the main storage form in animals, has several subtypes, which differ in isoprenoid chain length. These vitamin K2 homologues are called menaquinones, and are characterized by the number of isoprenoid residues in their side chains. Menaquinones are abbreviated MK-n, where M stands for menaquinone, the K stands for vitamin K, and the n represents the number of isoprenoid side chain residues. For example, menaquinone-4 (abbreviated MK-4) has four isoprene residues in its side chain. Menaquinone-4 (also known as menatetrenone from its four isoprene residues) is the most common type of vitamin K2 in animal products since MK-4 is normally synthesized from vitamin K1 in certain animal tissues (arterial walls, pancreas, and testes) by replacement of the phytyl tail with an unsaturated geranylgeranyl tail containing four isoprene units, thus yielding menaquinone-4. This homolog of vitamin K2 may have enzyme functions that are distinct from those of vitamin K1.
      Bacteria in the colon (large intestine) can also convert K1 into vitamin K2. In addition, bacteria typically lengthen the isopreneoid side chain of vitamin K2 to produce a range of vitamin K2 forms, most notably the MK-7 to MK-11 homologues of vitamin K2. All forms of K2 other than MK-4 can only be produced by bacteria, which use these forms in anaerobic respiration. The MK-7 and other bacteria-derived form of vitamin K2 exhibit vitamin K activity in animals, but MK-7's extra utility over MK-4, if any, is unclear and is presently a matter of investigation.
      Three synthetic types of vitamin K are known: vitamins K3, K4, and K5. Although the natural K1 and all K2 homologues have proven nontoxic, the synthetic form K3 (menadione) has shown toxicity.
Picture
Discovery of vitamin K1
      Vitamin K1 was identified in 1929 by Danish scientist Henrik Dam when he investigated the role of cholesterol by feeding chickens a cholesterol-depleted diet. After several weeks, the animals developed haemorrhages and started bleeding. These defects could not be restored by adding purified cholesterol to the diet. It appeared that—together with the cholesterol—a second compound had been extracted from the food, and this compound was called the coagulation vitamin. The new vitamin received the letter K because the initial discoveries were reported in a German journal, in which it was designated as Koagulationsvitamin.
Conversion of vitamin K1 to vitamin K2 in animals
      The MK-4 form of vitamin K2 is produced via conversion of vitamin K1 in the testes, pancreas, and arterial walls. While major questions still surround the biochemical pathway for the transformation of vitamin K1 to MK-4, the conversion is not dependent on gut bacteria, as it occurs in germ-free rats and in parenterally-administered K1 in rats. In fact, tissues that accumulate high amounts of MK-4 have a remarkable capacity to convert up to 90% of the available K1 into MK-4. There is evidence that the conversion proceeds by removal of the phytyl tail of K1 to produce menadione as an intermediate, which is then condensed with an activated geranylgeranyl moiety (see also prenylation) to produce vitamin K2 in the MK-4 (menatetrione) form.
Subtypes of vitamin K2
      Vitamin K2 (menaquinone) includes several subtypes. The two subtypes most studied are menaquinone-4 (menatetrenone, MK-4) and menaquinone-7 (MK-7).
      Menaquinone-7 is different from MK-4 in that it is not produced by human tissue. MK-7 consumption has been shown to reduce the risk of bone fractures and cardiovascular disorders that are crucial health issues worldwide. Recently, leading research teams from Australia, Japan, and Korea are broadening the understanding of MK-7 and its production. It has been reported that MK-7 may be converted from phylloquinone (K1) in the colon by E. coli bacteria. However, bacteria-derived menaquinones (MK-7) appear to contribute minimally to overall vitamin K status. MK-4 and MK-7 are both found in the United States in dietary supplements for bone health.
      The U.S. Food and Drug Administration (FDA) has not approved any form of vitamin K for the prevention or treatment of osteoporosis; however, MK-4 has been shown to decrease the incidence of fractures up to 87%. MK-4 (45 mg daily) has been approved by the Ministry of Health in Japan since 1995 for the prevention and treatment of osteoporosis.
      Vitamin K2 as MK-4, but not as MK-7 (and also not vitamin K1) has also been shown to prevent bone loss and/or fractures in the following circumstances:
caused by corticosteroids (e.g., prednisone, dexamethasone, prednisolone),
anorexia nervosa,
cirrhosis of the liver,
postmenopausal osteoporosis,
disuse from stroke,
Alzheimer's disease,
Parkinson disease,
primary biliary cirrhosis
and leuprolide treatment (for prostate cancer).
Chemical structure
      The three synthetic forms of vitamin K are vitamins K3, K4, and K5, which are used in many areas, including the pet food industry (vitamin K3) and to inhibit fungal growth (vitamin K5).
Physiology
      Vitamin K1, the precursor of most vitamin K in nature, is a steroisomer of phylloquinone, an important chemical in green plants, where it functions as an electron acceptor in photosystem I during photosynthesis. For this reason, vitamin K1 is found in large quantities in the photosynthetic tissues of plants (green leaves, and dark green leafy vegetables such as romaine lettuce, kale and spinach), but it occurs in far smaller quantities in other plant tissues (roots, fruits, etc.). Iceberg lettuce contains relatively little. The function of phylloquinone in plants appears to have no resemblance to its later metabolic and biochemical function (as "vitamin K") in animals, where it performs a completely different biochemical reaction.
      Vitamin K (in animals) is involved in the carboxylation of certain glutamate residues in proteins to form gamma-carboxyglutamate (Gla) residues. The modified residues are often (but not always) situated within specific protein domains called Gla domains. Gla residues are usually involved in binding calcium, and are essential for the biological activity of all known Gla proteins.
      At this time, 16 human proteins with Gla domains have been discovered, and they play key roles in the regulation of three physiological processes:
Blood coagulation: prothrombin (factor II), factors VII, IX, and X, and proteins C, S, and Z
Bone metabolism: osteocalcin, also called bone Gla protein (BGP), matrix Gla protein (MGP), periostin, and the recently discovered Gla-rich protein (GRP).
Vascular biology: growth arrest-specific protein 6 (Gas6)
Unknown function: proline-rich g-carboxy glutamyl proteins (PRGPs) 1 and 2, and transmembrane g-carboxy glutamyl proteins (TMGs) 3 and 4.
      Like other lipid-soluble vitamins (A, D, E), vitamin K is stored in the fat tissue of the human body.
Vitamin K absorption and dietary need
      Previous theory held that dietary deficiency is extremely rare unless the intestine (small bowel) was heavily damaged, resulting in malabsorption of the molecule. Another at-risk group for deficiency were those subject to decreased production of K2 by normal intestinal microbiota, as seen in broad spectrum antibiotic use. Taking broad-spectrum antibiotics can reduce vitamin K production in the gut by nearly 74% in people compared with those not taking these antibiotics. Diets low in vitamin K also decrease the body's vitamin K concentration. Those with chronic kidney disease are at risk for vitamin K deficiency, as well as vitamin D deficiency, and particularly those with the apoE4 genotype. Additionally, in the elderly there is a reduction in vitamin K2 production.
      Recent research results also demonstrate that the small intestine and large intestine (colon) seem to be inefficient at absorbing vitamin K supplements in rat populations low in Vitamin K. These results are reinforced by human cohort studies, where a majority of the subjects showed inadequate vitamin K amounts in the body. This was revealed by the presence of large amounts of incomplete gamma-carboxylated proteins in the blood, an indirect test for vitamin K deficiency. And in an animal model MK-4 was shown to prevent arterial calcifications, pointing to its potential role in prevention of such calcification. In this study vitamin K1 was also tested, in an attempt to make connections between vitamin K1 intake and calcification reduction. Only vitamin K2 (as MK-4) was found to influence warfarin-induced calcification in this study.
Recommended amounts
      The U.S. Dietary Reference Intake (DRI) for an Adequate Intake (AI) of vitamin K for a 25-year old male is 120 micrograms (μg) per day. The AI for adult women is 90 μg/day, for infants is 10–20 μg/day, and for children and adolescents 15–100 μg/day. To get maximum carboxylation of osteocalcin, one may have to take up to 1000 μg of vitamin K1.
Anticoagulant drug interactions
      Phylloquinone (K1) or menaquinone (K2) are capable of reversing the anticoagulant activity (incorrectly but colloquially referred to as "blood-thinning action") of the powerful anticoagulant warfarin (tradename Coumadin). Warfarin works by blocking recycling of vitamin K, so that the body and tissues have lower levels of active vitamin K, and thus a deficiency of the active vitamin.
       Supplemental vitamin K (for which oral dosing is often more active than injectable dosing in human adults) reverses the vitamin K deficiency caused by warfarin, and therefore modulates or totally reverses the intended anticoagulant action of warfarin and related drugs.[citation needed] Foods containing high amounts of vitamin K (green leafy vegetables) are avoided when taking warfarin . Sometimes small amounts of vitamin K (one milligram per day) are given orally to patients taking Coumadin so that the action of the drug is more predictable. The proper anticoagulant action of the drug is a function of vitamin K intake and drug dose, and (due to differing absorption) must be individualized for each patient. The action of warfarin and vitamin K both require two to five days after dosing to have maximum effect, and neither Coumadin or vitamin K shows much effect in the first 24 hours after they are given.
       In two separate studies in the rat model, after long term administration of Coumadin to induce calcification of arteries in the rodents, supplemental vitamin K was found to reverse or prevent some of the arterial calcification attendant on the long-term blockade of vitamin K. A second study found that only vitamin K2 as MK-4, and not vitamin K1 was effective at preventing warfarin-induced arterial calcification in rats, suggesting differing roles for the two forms of the vitamin in some calcium-dependent processes.
       The newer anticoagulants dabigatran and rivaroxaban have different mechanisms of action that do not interact with vitamin K, and may be taken with supplemental vitamin K.
Food sources
Vitamin K1
       Vitamin K1 is found chiefly in leafy green vegetables such as dandelion greens (which contain 778.4 μg per 100 g, or 741% of the recommended daily amount), spinach, swiss chard, and Brassica (e.g. cabbage, kale, cauliflower, broccoli, lettuce, and brussels sprouts) and often the absorption is greater when accompanied by fats such as butter or oils; some fruits, such as avocado, kiwifruit and grapes, are also high in vitamin K. By way of reference, two tablespoons of parsley contain 153% of the recommended daily amount of vitamin K. Some vegetable oils, notably soybean, contain vitamin K, but at levels that would require relatively large calorific consumption to meet the USDA-recommended levels. Colonic bacteria synthesize a significant portion of humans' vitamin K needs; newborns often receive a vitamin K shot at birth to tide them over until their colons become colonized at five to seven days of age from the consumption of their mother's milk.
       Phylloquinone's tight binding to thylakoid membranes in chloroplasts makes it less bioavailable. For example, cooked spinach has a 5% bioavailability of phylloquinone, however, fat added to it increases bioavailability to 13% due to the increased solubility of vitamin K in fat.
Vitamin K2
       Food sources of vitamin K2 include fermented or aged cheeses, eggs, meats such as chicken and beef and their fat, livers, and organs, and in fermented vegetables, especially natto, as well as sauerkraut and kefir.
       Vitamin K2 (menaquinone-4) is synthesized by animal tissues and is found in meat, eggs, and dairy products. Menaquinone-7 is synthesized by bacteria during fermentation and is found in fermented soybeans (natto), and in most fermented cheeses. In natto, none of the vitamin K is from menaquinone-4, and in cheese only 2–7% is.
Vitamin K deficiency
       Average diets are usually not lacking in vitamin K, and primary deficiency is rare in healthy adults. Newborn infants are at an increased risk of deficiency. Other populations with an increased prevalence of vitamin K deficiency include those who suffer from liver damage or disease (e.g. alcoholics), cystic fibrosis, or inflammatory bowel diseases, or have recently had abdominal surgeries. Secondary vitamin K deficiency can occur in bulimics, those on stringent diets, and those taking anticoagulants. Other drugs associated with vitamin K deficiency include salicylates, barbiturates, and cefamandole, although the mechanisms are still unknown. Vitamin K1 deficiency can result in coagulopathy, a bleeding disorder. Symptoms of K1 deficiency include anemia, bruising, and bleeding of the gums or nose in both sexes, and heavy menstrual bleeding in women.
       Osteoporosis and coronary heart disease are strongly associated with lower levels of K2 (menaquinone). Vitamin K2 (MK-7) deficiency is also related to severe aortic calcification and all-cause mortality.[74] Menaquinone is not inhibited by salicylates as happens with K1, so menaquinone supplementation can alleviate the chronic vitamin K deficiency caused by long-term aspirin use.
Toxicity
       Although allergic reaction from supplementation is possible, no known toxicity is associated with high doses of the phylloquinone (vitamin K1) or menaquinone (vitamin K2) forms of vitamin K, so no tolerable upper intake level (UL) has been set.
       Blood clotting (coagulation) studies in humans using 45 mg per day of vitamin K2 (as MK-4) and even up to 135 mg/day (45 mg three times daily) of K2 (as MK-4), showed no increase in blood clot risk. Even doses in rats as high as 250 mg/kg body weight did not alter the tendency for blood-clot formation to occur.
       Unlike the safe natural forms of vitamin K1 and vitamin K2 and their various isomers, a synthetic form of vitamin K, vitamin K3 (menadione), is demonstrably toxic. The U.S. FDA has banned this form from over-the-counter sale in the United States because large doses have been shown to cause allergic reactions, hemolytic anemia, and cytotoxicity in liver cells.
Vitamin K injection in newborns
       The blood clotting factors of newborn babies are roughly 30 to 60% that of adult values; this may be due to the reduced synthesis of precursor proteins and the sterility of their guts. Human milk contains 1–4 μg/L of vitamin K1, while formula-derived milk can contain up to 100 μg/L in supplemented formulas. Vitamin K2 concentrations in human milk appear to be much lower than those of vitamin K1. Occurrence of vitamin K deficiency bleeding in the first week of the infant's life is estimated at 0.25 to 1.7%, with a prevalence of two to 10 cases per 100,000 births. Premature babies have even lower levels of the vitamin, so they are at a higher risk from this deficiency.
       Bleeding in infants due to vitamin K deficiency can be severe, leading to hospitalizations, blood transfusions, brain damage, and death. Supplementation can prevent most cases of vitamin K deficiency bleeding in the newborn. Intramuscular administration is more effective in preventing late vitamin K deficiency bleeding than oral administration.
USA -- As a result of the occurrences of vitamin K deficiency bleeding, the Committee on Nutrition of the American Academy of Pediatrics has recommended 0.5 to 1.0 mg vitamin K1 be administered to all newborns shortly after birth.
UK -- In the UK, vitamin K is administered to newborns as either a single injection at birth or three orally administered doses given at birth and then over the baby's first month.
Controversy
       Controversy arose in the early 1990s regarding this practice, when two studies suggested a relationship between parenteral administration of vitamin K and childhood cancer,[citation needed] however, poor methods and small sample sizes led to the discrediting of these studies, and a review of the evidence published in 2000 by Ross and Davies found no link between the two.
Vitamin K and bone health
       Both physiological and observational evidence indicate vitamin K plays a role in bone growth and the maintenance of bone density, but a large study attempting to delay the onset of osteoporosis by vitamin K supplementation proved ineffective.
       Vitamin K takes part in the post-translational modification as a cofactor in γ-carboxylation of vitamin K-dependant proteins (VKDPs). VKDPs have glutamate residues (Glu). Biophysical studies suggest that supplemental vitamin K promotes osteotrophic processes and slows osteoclastic processes via calcium bonding. Study of Atkins et al. revealed phylloquinone, menatetrenone (MK-4) and menadione promote in vitro mineralization by human primary osteoblasts. Other studies have shown vitamin K antagonists (usually a class of anticoagulants) lead to early calcification of the epiphysis and epiphysial line in mice and other animals, causing seriously decreased bone growth, due to defects in osteocalcin and matrix Gla protein. Their primary function is to prevent overcalcification of the bone and cartilage. Vitamin K is important in the process of carboxylating glutamic acid (Glu) in these proteins to gamma-carboxyglutamic acid (Gla), which is necessary for their function. Vitamin D is reported to regulate the OC transcription by osteoblast thereby showing that vitamin K and vitamin D work in tandem for the bone metabolism and development. Lian and his group discovered two nucleotide substitution regions they named "osteocalcin box" in the rat and human osteocalcin genes. They found a region 600 nucleotides immediately upstream from the transcription start site that support a 10-fold stimulated transcription of the gene by 1,25-dihydroxy vitamin D.
Vitamin K1 and bone health
       Data from the 1998 Nurses Health Study, an observational study, indicated an inverse relationship between dietary vitamin K1 and the risk of hip fracture. After being given 110 micrograms/day of vitamin K, women who consumed lettuce one or more times per day had a significantly lower risk of hip fracture than women who consumed lettuce one or fewer times per week. In addition to this, high intakes of vitamin D but low intakes of vitamin K were suggested to pose an increased risk of hip fracture. The Framingham Heart Study is another study that showed a similar result. Subjects in the highest quartile of vitamin K1 intake (median K1 intake of 254 μg/ day) had a 35% lower risk of hip fracture than those in the lowest quartile. 254 μg/day is above the US Daily Reference Intake (DRI) of 90 μg/day for women and 120 μg/day for men.
       In the face of this evidence, a large multicentre, randomized, placebo-controlled trial was performed to test the supplementation of vitamin K in postmenopausal women with osteopenia. Despite heavy doses of vitamin K1, no differences were found in bone density between the supplemented and placebo groups.
Vitamin K2 (MK-4) and bone health
       MK-4 has been shown in numerous studies to reduce fracture risk, and stop and reverse bone loss. In Japan, MK-4 in the dose of 45 mg daily is recognized as a treatment for osteoporosis under the trade name Glakay. MK-4 has been shown to decrease fractures up to 87%. In the amount of 45 mg daily MK-4 has been approved by the Ministry of Health in Japan since 1995 for the prevention and treatment of osteoporosis.
       MK-4 (but not MK-7 or vitamin K1) prevented bone loss and/or fractures in the following circumstances:
caused by corticosteroids (e.g., prednisone, dexamethasone, prednisolone)
anorexia nervosa
cirrhosis of the liver
postmenopausal osteoporosis
disuse from stroke
Alzheimer's disease
Parkinson disease
primary biliary cirrhosis
leuprolide treatment (for prostate cancer).
Vitamin K2 (MK-7) and bone health
       Menaquinone-7 (MK-7), which is abundant in fermented soybeans (natto), has been demonstrated to stimulate osteoblastic bone formation and to inhibit osteoclastic bone resorption.[108] In another study, use of MK-7 caused significant elevations of serum Y-carboxylated osteocalcin concentration, a biomarker of bone formation. MK-7 also completely inhibited a decrease in the calcium content of bone tissue by inhibiting the bone-resorbing factors parathyroid hormone and prostaglandin E2. On 19 February 2011, HSA (Singapore) approved a health supplement that contains vitamin K2 (MK-7) and vitamin D3 for increasing bone mineral density.
Vitamin K2 (MK-7) and coronary heart disease
       A study by Gast et al. (2009), reports "an inverse association between vitamin K(2) and risk of CHD with a Hazard Ratio (HR) of 0.91 [95% CI 0.85–1.00] per 10 μg/d vitamin K(2) intake. This association was mainly due to vitamin K(2) subtypes MK-7, MK-8 and MK-9. Vitamin K(1) intake was not significantly related to CHD. The authors conclude that "a high intake of menoquinones, especially MK-7, MK-8 and MK-9, could protect against CHD. However, more research is necessary to define optimal intake levels of vitamin K intake for the prevention of CHD."
Vitamin K and Alzheimer's disease
       Research into the antioxidant properties of vitamin K indicates that the concentration of vitamin K is lower in the circulation of carriers of the APOE4 gene, and recent studies have shown its ability to inhibit nerve cell death due to oxidative stress. It has been hypothesized that vitamin K may reduce neuronal damage and that supplementation may hold benefits to treating Alzheimer's disease, although more research is necessary in this area.
Vitamin K used topically
       Vitamin K may be applied topically, typically as a 5% cream, to diminish postoperative bruising from cosmetic surgery and injections, to treat broken capillaries (spider veins), to treat rosacea, and to aid in the fading of hyperpigmentation and dark under-eye circles.
Vitamin K and cancer
        This section needs more medical references for verification or relies too heavily on primary sources. Please review the contents of the section and add the appropriate references if you can. Unsourced or poorly sourced material may be removed. (January 2014) 
        While researchers in Japan were studying the role of vitamin K2 as the menaquinone-4 (MK-4) form in the prevention of bone loss in females with liver disease, they discovered another possible effect. This two-year study that involved 21 women with viral liver cirrhosis found that women in the supplement group were 90% less likely to develop liver cancer. A German study performed on men with prostate cancer found a significant inverse relationship between vitamin K2 consumption and advanced prostate cancer.
       In 2006, a clinical trial showed that K2 as the menaquinone-4 (MK-4) (called menatetrenone in the study) might be able to reduce recurrence of liver cancer after surgery. It should be noted that this was a small pilot study and other similar studies did not show much effect. MK-4 is now being tested along with other drugs to reduce liver cancer and has shown promising early results.
Vitamin K and diabetes in the elderly
       A research shows that total diabetes risk of individual who have highest circulating levels of vitamin K1 were 51% lower than those with the lowest levels. The researchers conclude that dietary phylloquinone intake is associated with reduced risk of type 2 diabetes.
Vitamin K and non-Hodgkin lymphoma
       A research shows that the risk of developing non-Hodgkin lymphoma was decreased by 45 percent for the study participants who had the highest vitamin K levels compared to participants with the lowest levels of the vitamin.
Vitamin K as antidote for poisoning by 4-hydroxycoumarin drugs
       Vitamin K is an antidote for poisoning by 4-hydroxycoumarin anticoagulant drugs (sometimes loosely referred to as coumarins). These include the pharmaceutical warfarin, and also anticoagulant-mechanism poisons such as bromadiolone, which are commonly found in rodenticides. 4-Hydroxycoumarin drugs possess anticoagulatory and rodenticidal properties because they inhibit recycling of vitamin K and thus cause simple deficiency of active vitamin K. This deficiency results in decreased vitamin K-dependent synthesis of some clotting factors by the liver. Death is usually a result of internal hemorrhage. Treatment for rodenticide poisoning usually consists of repeated intravenous doses of vitamin K, followed by doses in pill form for a period of at least two weeks, though possibly up to 2 months, after poisoning (this is necessary for the more potent 4-hydoxycoumarins used as rodenticides, which act by being fat-soluble and thus having a longer residence time in the body). If caught early, prognosis is good even when great amounts of the drug or poison are ingested, as these drugs are not true vitamin K antagonists, so the same amount of fresh vitamin K administered each day is sufficient for any dose of poison (although as noted, this must be continued for a longer time with more potent poisons). No matter how large the dose of these agents, they can do no more than prevent vitamin K from being recycled, and this metabolic problem may always be simply reversed by giving sufficient vitamin K (often 5 mg per day) to ensure that enough fresh vitamin K resides in the tissues to carry out its normal functions, even when efficient use of it by the body is prevented by the poison.
Powered by Create your own unique website with customizable templates.